

Nicolas Viera

Agile Methodologies

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

16 February 2023

Abstract

Author: Nicolas Viera

Title: Agile Methodologies

Number of Pages: 38 pages

Date: 16 February 2023

Degree: Bachelor of Engineering

Degree Programme: Information Technology

Professional Major: Smart IoT Systems

Supervisors: Antti Piironen (Principal Lecturer)

 Anne Pajala (Senior Lecturer)

Once the waterfall method became obsolete, programmers wanted to develop a new
way to improve the work of software development teams. The waterfall method was
taking teams too long to deliver products. Sometimes making the product was
outdated and impractical by the time of its release because of the constant growth of
the software development market.

This contributes to the goal of the thesis, which is to study this new way of software
development called Agile. This study will explore the ways of Agile, the history, the
Manifesto, values, principles, Pareto Principle and the different variants of Agile that
were created for specific needs. These methodologies follow certain criteria and
workflow. Furthermore, this thesis will include the benefits and drawbacks of these
Agile methodologies and how they can be used in companies.

One of the main focuses of this thesis is the Agile methodology called Scrum. Scrum
is the most popular of all frameworks and is being endlessly improved as more teams
use it. Towards the end of this thesis, Scrum implementation will be defined. The
roles of the Product Owner, Scrum Master, and development team are thoroughly
explained. Also, Scrum Events and Scrum Artifacts and how they are imperative for
Scrum is discussed.

Keywords: Waterfall, Software Development, Agile, Manifesto, Pareto

Principle, Methodology, Scrum, Product Owner, Scrum Master, Development Team,

Scrum Events, Scrum Artifacts

Contents

List of Abbreviations

1 Introduction 1

2 Software Development History 1

2.1 Waterfall Model 2

2.2 Prototype Model 3

3 Agile 5

3.1 Manifesto 6

3.1.1 Values of Agile 6

3.1.2 Principals of Agile 7

3.2 Pareto Principle 8

3.3 Agile Methods 9

3.3.1 Kanban 9

3.3.2 Extreme Programming 11

3.3.3 Lean 13

3.3.4 Crystal 16

3.3.5 Scrum 19

4 Scrum Implementation 20

4.1 The Scrum Team 21

4.1.1 Product Owner 21

4.1.2 Scrum Master 21

4.1.3 Development Team 22

4.2 Scrum Events 23

4.2.1 Sprint Planning 23

4.2.2 Daily Scrum 23

4.2.3 Sprint Review 24

4.2.4 Sprint Retrospective 25

4.3 Scrum Artifacts 26

4.3.1 Product Backlog 26

4.3.2 Sprint Backlog 27

4.3.3 Increments 27

5 Conclusion 28

References 30

List of Abbreviations

XP: Extreme Programming

DSDM: Dynamic System Development Method

UAT: User Acceptance Test

IT: Information Technology

DevOps: Development Operations

WIP: Work in progress

LSD: Lean Software Development

TPS: Toyota Production System

IBM: International Business Machine Corporation

PO: Product Owner

SM: Scrum Master

DoD: Definition of Done

1

1 Introduction

Competition on the software development market is currently booming and

businesses must make sure that their products are of the highest quality,

delivered in a timely manner, and updated for the markets ongoing demand.

Businesses frequently deliver products that are no longer useful at the time of

their release and the project would either be scrapped or in need of refinement,

and, therefore, wasting time and money. This can be prevented if the customer

was more involved in the project and businesses adopted the Agile method [1].

Adapting to Agile methods allow businesses to be more customer-focused,

flexible and able to produce better results, including in development,

management, logistics, human resources, and delivery. For instance, during

meetings, teams may swiftly adjust to requirement changes without having a

detrimental influence on release schedules. Agile lowers costs, raises customer

gratification, produces products of superior quality, increases alignment with the

customer and overall business value [1].

The goal of this thesis is to explore and analyse Agile. Additionally, the most

used methodologies which include Kanban, Extreme programming, Lean,

Crystal and Scrum. Also, the benefits and drawbacks of these Agile methods as

well as a brief history of software development concerning Agile predecessors,

the waterfall and prototype models are discussed. Moreover, the Agile

Manifesto along with its four values and twelve principles, as well as, how the

Pareto Principle fits into Agile are explained and analysed. Finally, the objective

is to thoroughly explain Scrum and how it is implemented as Scrum is the most

widely used Agile methodology [1].

2 Software Development History

The world’s first piece of software was created by computer scientist Tom

Kilburn and executed at the University of Manchester in England in June of

2

1948. Kilburn and his colleague Freddie Williams had built the Manchester

Small-Scale Experimental Machine which is also known as the “Baby”. The

Baby was the world’s first computer with storage that was able to read and write

data reliably [2]. This marked the beginning of software development, but it was

not until the 1970s that the waterfall and prototype models were introduced

[3][6].

2.1 Waterfall Model

The waterfall model is a step-by-step approach to management methodology

that mimics a waterfall in its trajectory, as shown in figure 1. This method was

founded by Winston W. Royce in 1970 and it is considered the oldest software

development practice [3].

Figure 1. Step-by-step model of the waterfall methodology [3].

The process starts with the requirements phase, where the project manager

gathers a detailed understanding of the customers’ requirements for the

product. This information is then captured in a product requirement document

3

which consists of title, author, purpose, scope, stakeholder identification,

product overview, technical requirements, high level workflow plans and

performance metrics [4]. The next phase involves the design. This is broken up

into the logical design and the physical design. The data gathered during the

requirements phase are used to design the system independently of any

hardware or software system. Once the higher-level logical design is finished,

the system specialists can start to convert it into a physical design in

accordance with the requirements of the customer [4]. Afterwards, it is the

responsibility of the programmers to code the applications during the

implementation phase, using the project requirements and specifications as a

guide [5]. During the verification phase, the quality assurance team evaluates

the product to make sure it complies with the required specifications and if it

needs debugging. If major faults or bugs are found, then the project moves back

one step to the implementation phase. The team can utilize UAT (user

acceptance test) to verify customer satisfaction and move on to the next step

[5]. Finally, the maintenance phase, where the product is in use by the customer

and if problems are found then changes are made. This phase is ongoing until

the product is no more or for as long as the contract dictates [5].

The waterfall model was used for many years and is still used to this day. It

follows a chronological model, has strong documentation and does not have

customer involvement which provides budget clarity, estimated project

completion and easier on new employees. In the end, costs may be higher due

to customer dissatisfaction and project plans lack flexibility due to the nature of

waterfall [5].

2.2 Prototype Model

Since the early 1970s, prototyping methods have been used to combat the

waterfall method disadvantages of delivering the project at the end of its

development. The prototype model is the development of software or product

that is a functional replica of the desired product. As a result, the customer can

provide feedback early on and see whether deadlines for the project can be

4

successfully met. The prototype may be missing certain capabilities, not reliable

and even be extremely inefficient but this is intended as it is used to evaluate

designs based on customer needs. This model was and is mainly used to give

the customer a very basic idea of what to expect. Prototype designs are done

until the customer is satisfied with the result [6]. The process of this model is

shown below in figure 2.

Figure 2. Prototype Model. [6]

The first stage requires comprehending the fundamental specifications of the

product, particularly regarding the user requirements. This can be done by

interviewing those that are going to be using the product [6]. The second phase

involves designing a preliminary and basic proposal. It is primarily intended to

provide a brief summary of the product; however, it is not the complete design

[7]. The third phase involves the actual prototype building where some features

5

may not work as intended but even so, it is to show a small working model with

the basic requirements and customer needs [6]. The next phase is where the

prototype is reviewed by the client and other business stakeholders of the

project. This is the phase where information and productive remarks are

gathered in order to further improve the prototype. This helps find the strengths

and weaknesses of the prototype [6]. The final step is to implement the product

and maintain it. The product is thoroughly tested and then deployed to

production while going through continuous maintenance to minimize disruptions

and prevent large-scale failure [7].

3 Agile

The Agile methodology is a strategy to manage projects by segmenting them

into several phases. Continuous improvement is needed at every level, as well

as ongoing cooperation with stakeholders. The customer is also involved in the

development of the project in order to upkeep customer satisfaction. Due to its

adaptability to change, flexibility and high level of customer involvement, using

the agile method has been one of the most popular approaches when it comes

to project management and software development [9].

According to statistics, at least 71% of United States companies use Agile and

64% of Agile projects are successful compared to the 49% waterfall projects

have [12]. Doing the mathematics, Agile projects are 150% more successful

than waterfall projects. After transforming to Agile, an average of 60% profit and

revenue have been reported by these companies. The top five reasons they

gave to adopt Agile were faster delivery, enhance the ability to manage

priorities, increase productivity, improve business and IT alignment and

enhance software quality [12].

6

3.1 Manifesto

A group of seventeen experienced software developers from Extreme

Programming, Scrum, DSDM, Adaptive Software Development, Crystal,

Feature-Driven Development, Pragmatic Programming and other types of

software development got together in 2001 to discuss the need for an

alternative to tedious, documentation-driven software development practices

and being locked to the waterfall development process. As a result, what they

came up with was the Agile Manifesto [8].

The Manifesto is about the four values and twelve principles of Agile. It serves

as a declaration that seeks to enhance software development methodologies

and directly addresses the inefficiencies of conventional development

procedures. The representatives wanted a way to not rely on heavy

documentation and minimize oversight on critical information [8].

3.1.1 Values of Agile

Individuals and interactions over process and tools, is the first value of the Agile

Manifesto. This suggests that the people behind the processes and tools are

more important than the latter. Software teams used to care more about having

the best possible tools and processes rather than building the right group of

individuals who can collaborate and solve any problem that arises [10].

Working software over comprehensive documentations, is the second value of

the Agile Manifesto. The Agile methodology values having working software for

their customers and before the Agile Manifesto, software developers would

spend a lot of their focus on working on documentation. This was never a bad

thing; however, they would spend an excessive amount of time working on

documents before providing any work on actual software [10].

Customer collaboration over contract negotiation, is the third value of the Agile

Manifesto. One of the most important and key features of the Agile methodology

7

is that the customer is constantly involved in the project. Before Agile, contracts

would be done and signed with the requirements of the customer but then the

final product would turn out to not be what was expected. With Agile, the

customer is always involved in an endless loop of giving feedback to ensure

that the product is what they need [11].

The final value of the Agile Manifesto is responding to change over following a

plan. With Agile, you can adapt to change, new customer demands, and the

ever-changing market because Agile does not follow a static roadmap where

you follow everything to detail and which has no room for change [11].

3.1.2 Principals of Agile

Below are the twelve principals of Agile taken from the Agile Manifesto official

website Agilemanfiesto.org [8].

Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

Welcome changing requirements, even late in development. Agile
processes harness change for the customer's competitive
advantage.

Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale.

Business people and developers must work together daily
throughout the project.

Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the job
done.

The most efficient and effective method of conveying information to
and within a development team is face-to-face conversation.

Working software is the primary measure of progress.

8

Agile processes promote sustainable development. The sponsors,
developers, and users should be able to maintain a constant pace
indefinitely.

Continuous attention to technical excellence and good design
enhances agility.

Simplicity--the art of maximizing the amount of work not done--is
essential.

The best architectures, requirements, and designs emerge from
self-organizing teams.

At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behaviour accordingly. [8]

These are twelves principals of Agile that define a culture that change is always

welcome and continuous customer involvement and feedback is part of the

work. Being able to consistently deliver new releases while gathering feedback

from the customer is much better than delivering a release all at once and

having to deal with a massive number of bugs and customer requests [8].

Having an Agile team with people that can hold their own and giving them the

support or resources, they need removes the need for micromanagement and

you can trust that the work will be of highest quality. Agile also ensures a good

work-life balance to maintain a high morale in the workplace. A maximum of 7.5

hours a day should be allotted to working hours [11].

3.2 Pareto Principle

The Pareto Principle, also known as the 80-20 rule or Pareto Rule, was devised

by an economist named Vilfredo Pareto. Pareto’s research specified that 80%

of the consequences originate from 20% of the causes, which concluded that

the correlation from inputs and outputs are not identical. His research was

based on Italy, where he concluded that 20% of the population owned about

80% of the land and after checking into other countries, he devised that the

9

same applied to them. Pareto derived that this rule can be applied to work

environments as well [25]. For instance, to software development because

statistics show that only 20% of a software’s features are used and the rest are

left to more professional users that need them for specific tasks [26].

In Agile, the team will give 80% of their time on the 20% of the most vital parts

of the project. This gives the customer more value out of the product because

they can demo the most significant features sooner than expected. The team

can identify which features will bring the most value by locating which one is

causing the most questions or doubts from customers. The customer can also

provide which features would be the most critical to add to the next iteration.

Having the 20% delivered faster also gives the developers more leeway with the

80% because those features will not be as vital to the customer and users. It is

also worth mentioning that this rule is not followed by every Agile team [26].

3.3 Agile Methods

Agile methodologies which this thesis include are Kanban, Extreme

Programming, Lean, Crystal and Scrum [13]. They all follow the Agile

philosophy but are all different in the way they aim to work. Choosing the right

methodology will depend on how the Agile team wishes to produce and deliver

their products.

3.3.1 Kanban

Kanban is an Agile methodology that is broadly known as one of the simplest

frameworks because it allows project managers to efficiently manage and keep

track of their projects. Kanban was initially developed in the late 1940s by a

Toyota industrial engineer called Taiichi Ohno [19]. His aim was to create a

simple planning system to control and manage work and inventory during every

project stage. Toyota created a flexible and efficient production control system

with Kanban, which enhanced productivity while eliminating expensive materials

and partially completed products that never got to be delivered [19].

10

Figure 3. The Kanban Board [19].

Kanban boards, as shown in figure 3, are used to represent workflow allowing

the team to optimize work delivery across several teams and handle intricate

projects. Kanban’s focus is to be able to visualize workflow, limit work-in-

progress, and maximize efficiency. This is all planned in the Kanban Board, it

helps Kanban teams picture their daily workload.

The Kanban Board consists of cards which are a visual representation of the

projects. Typically, one project or work item per card. Columns represent the

different stages on workflow, this includes “to-do”, “in progress” or “complete”

and this goes on until the completion of the column. Work-in-Progress limits are

the limits on the number of cards that can be in a column. For example, if the

WIP limit is 5 then there cannot be more than 5 cards in that column. If such a

thing happens that there is more than the limit, then the team needs to work on

that column to move them forward. Swim lanes are used to visually separate

workflow items of different types on the same board. The commitment point is

where the team decides to start working on a certain project, whereas the

delivery point is where the work is considered done. The Kanban board allows

11

the use of a pull system where work items are pulled into the queue only when

they are requested and in prioritized order [19].

Much like other Agile methodologies, Kanban is flexible, offers continuous

delivery, increases productivity, and effectiveness. But what separates it from

other methodologies is the Kanban board and that it is a simple and easy to

understand system which can be applied by any company [20]. However, for

Kanban to work, the board always needs to be updated or the team will start to

work on items that no longer needs work. Additionally, the board can sometimes

become too difficult for some team members, and it can be flooded with

overcomplicated cards. There are also no direct timeframes for the workflow

which can disorientate team members and cause stress [19].

To tackle these problems with Kanban along with Scrum, Scrumban was

developed. Scrumban is a hybrid Agile approach which combines the structure

and routines of Scrum and visual work of Kanban. Scrumban takes the best

from Scrum which is planning, reviews, retrospectives, prioritisation, and

identifying how much work can be put into a Sprint. From Kanban, it takes

pulling items when the team can, no specific roles in the team, flow charts, and

the Kanban board [23].

3.3.2 Extreme Programming

Extreme programming (XP) was developed by Kent Beck back in 1996 to find a

better way of doing software development. XP follows the same principles as

Agile, where teams are producing high quality software and can adapt to

changing requirements. But what makes XP different is that it focuses more on

how engineers work and delivering higher quality code. XP also follows a set of

five values which are communication, simplicity, feedback, courage and

respect. It also follows the twelve principles similar to the Agile Manifesto

principles [22].

12

Communication is always key when working within a team. People can learn

from each other and help others when there is a problem they can solve. This

saves time and money. Simplicity, as the name suggest, is keeping things

simple. Only doing what is necessary and not going above and beyond without

needing to. Feedback is always important to product better results. Without

feedback, the team will be continuing working without refined requirements to

customer needs. Gathering opinions from team members and customers are a

must. Courage is needed to stop working on something that is not going work

and to act on feedback even when it is difficult to accept. Kent Beck defines

courage as an “effective action in the face of fear” [22]. Respect is one of the

most vital values of XP, people in team need to respect each other to be able to

work well together and collaborate in a healthy setting. There is no gain from

disrespecting one another. This will only cause distraught within the team and

hinder project continuation [21].

The twelves principles are as follows:

• The Planning Game.

• Small Releases.

• Metaphor.

• Simple Design.

• Testing.

• Refactoring.

• Pair Programming.

• Collective Ownership.

• Continuous Integration.

• 40-hour week.

• On-site Customer.

• Coding Standard.

With these values and principles set, XP bring many benefits to development

teams. Organized programming which brings fewer mistakes and creates less

bugs. This is done through pair programming which is two programmers sharing

a workstation. One person is the driver, who is actively on the computer and the

13

navigator who is showing the directing the driver. This makes producing code

very effective as well as more fun and engaging. Moreover, it is also expected

for the pair to swap roles every now and then. There is more programmer and

client satisfaction because the customer has control. The customer makes the

business decisions and provides what features are to be added as well as their

acceptance criteria. Additionally, the customer will always be directly involved in

the project as part of the team [22].

Figure 4. Extreme Programming Cycle. [24]

Similarly, to other methodologies, XP has user stories which are short

descriptions of the customers’ wants and needs for the project as shown in

figure 4. This is also where the requirements for the stories are gathered.

Furthermore, there are iterations in XP which are weekly cycles. These are held

at the start of the week to check on the team’s progress and for the customer to

select which stories are to be delivered on that week. Ultimately, the goal is to

have these stories produce running tested features by the end of the week [24].

3.3.3 Lean

Mary Poppendieck and Tom Poppendieck are the creators of Lean Software

Development (LSD). They wrote a book in 2003 called “Lean Software

14

Development: An Agile Toolkit” and provided the readers with Lean

manufacturing principles as well as comparison to traditional Agile methods.

Which led to them combining and transforming these ideologies into their own

method. LSD originates from the Toyota Production System (TPS). TPS was

designed to remove irregularities in production and manufacturing to remove

waste as well as to create a process that can deliver required results smoothly

[30].

Figure 5. 7 principles of lean software development [30].

Figure 5 shows the 7 LSD principles which are mentioned on Mary’s and Tom’s

book. These principles are derived from TPS’s principles which are waste of

overproduction, waste of time on hand, waste of transportation, waste of

processing itself, waste of excess inventory, waste of movement, waste of

making defective products and waste of underutilized workers. The difference is

that TPS principles were meant for manufacturing companies and LSD

principles are for software and engineering [29].

To be able to deliver more value to the customer and improve satisfaction,

eliminating waste is key. By eliminating waste, you increase efficiency, save

time and money. Removing unnecessary code or features that do not provide

any worth to the customer or users can help improve feedback loops and

15

minimize the development processes. Disregarding unclear requirements result

in having less frustration and quality issues [29].

Amplified learning is about creating knowledge within the team and allowing

every developer to learn from each other. This can be done by pair

programming as explained previously in the Extreme Programming chapter.

Furthermore, team members can hold code reviews, create documentation, and

set up meetings to share knowledge. To achieve the best results possible,

decisions are best to be made as late as possible. This helps clear uncertainties

and allows team members to make decisions based on facts and not

assumptions. As a result, this prevents having to start over or make changes to

the project [30].

Just like every other Agile approach, LSD heavily emphasizes on delivering as

fast as possible. With the current fast and ever-changing technology market,

this approach is seen as indispensable to software development teams.

Empowering the team by respecting and communication with each other is

another LSD principle. Teams need to focus on understanding and respecting

one another because otherwise conflicts will arise which will result in an

adverse workplace. Managers should be professionals who are able to listen,

act and provide valuable suggestions to other members of the team [29].

The customer should be providing a constant flow of information to the

developers and the same should be done from developers to the customer

because this builds integrity. The customer then has an idea of how the product

will work and can already experience the system or interface. Optimizing the

whole, allows the team to examine the project from the beginning to the end

and lets them take apart tasks that may be challenging into smaller or easier

tasks. This helps teams to understand how much they can deliver, therefore,

preventing unstable software. Overall, Lean Software Development is customer

oriented, highly adaptable, very flexible, and minimizes waste. However, having

professionals in an LSD team is essential because they would need to follow all

the values and principles of Lean [30].

16

3.3.4 Crystal

Alistair Cockburn, an American computer scientist working at the International

Business Machine Corporation also known as IBM, research many different

types of software development teams that did not follow official methodologies.

However, these teams ended up with fully successful projects. This is how he

came up with the Crystal methods which focus on team members, interaction,

skills and communication [32].

The Crystal framework adopted seven principles where the first three are

mandatory but the last four are optional and should be implemented if required.

The first three are frequent delivery, reflective improvement and osmotic

communication. Osmotic communication refers to having the whole team in the

same location because this allows team members to easily pass around

information. This can become a problem if there were to be team members who

work abroad or remote and wish to communicate with the team. The last four

principles are personal safety, focus on work, access to subject matter experts

and users, and finally technical tooling. Technical tooling in a sense means

automation. This means that faults and mistakes would be found automatically

[31].

17

Figure 6. Methods of Crystal Family [33].

Crystal is a family of many variant approaches such as Crystal Clear, Crystal

Yellow, Crystal Orange, Crystal Red, Crystal Maroon, Crystal Diamond, and

Crystal Sapphire as shown on figure 6. Crystal Diamond and Crystal Sapphire

are used for dangerous and large-scale projects that may put human life in

danger. Crystal focuses heavily on the size of project and how important the

project is to the company or team. Therefore, Alistair separate the importance of

a project to different marks as shown in figure 6. L for life, E for essential

money, D for discretionary money and C for comfort. Depending on these two

factors, they will determine which Crystal family the project will fall in to. Crystal

also has leading roles in software teams which include Executive Sponsor,

Executive, Lead Designer, Programmer, The Ambassador User, and Tester

[33].

Every Crystal methodology follows an incremental development process flow

which can last anywhere from one week to three months. This process involves

many practices which are continuously happening throughout the duration of

the project. These practices include staging, monitoring, revisions and review,

18

parallelism and flux, holistic delivery strategy, methodology tuning technique,

user viewings and reflection workshops [33].

Staging is a planning session of when the next increment will start. A schedule

will be mapped out from start to finish of the project and developers will decide

on which activities they will work on based on their professional capability.

Monitoring is where the team monitors the progress of the project and

guarantees that it is going as planned. Monitoring stages are done during

project milestones which includes the start, first review, second review, during

tests, while delivering, and in stability stages. Revision and review occur during

every increment and release where developers involved in activities such as

construction, demonstration and testing, as well as reviewing the increments.

Developers start to work on the design and coding part of the project. After this

is done, testers can begin testing for bugs and mishaps. If nothing is found, then

developers can finally start reviewing the product to verify that it fits with the

requirements. Parallelism allows teams to work in correlation which involves two

or more projects depending on how many teams are involved. Flux is the flow of

work, where teams monitor that work is being done and it is stable enough to be

presented. Holistic diversity strategy follows the idea that larger teams are to be

split up into smaller chunks. This allows smaller teams to be more functional

and can be split up by their proficiency [33].

Crystal was created by fine-tuning different software development

methodologies into one family and this is how the methodology-tuning

technique was founded [32]. Similarly, to how Alistair created Crystal, this

technique uses the data from interviews, workshops, and feedback from

development teams to fine-tune the Crystal family. During every increment,

teams are to gains more knowledge and devise which techniques and tools

where most appropriate for Crystal. User viewings are done at least twice for

every release of a final product. Depending on if the project is of a larger scale,

then user viewings can be increased to a minimum of three. This gives value to

the customer and end-users because it increases the chances that the

requirements for the project were fulfilled [33].

19

One of Crystal’s focuses is to adjust projects and methods depending on size

and budget of the project to provide a solid idea on which method to use.

Reflection workshops are used to brainstorm previous and upcoming projects to

determine what was learned and what can be learned. Workshops are also

beneficial to come up with strategies that are to be used. Ultimately, this saves

time, money, and increases effectiveness.

3.3.5 Scrum

The origins of the Scrum framework date back to 1986, where Takeuchi and

Nonaka described how first-class and innovate products are developed in

cross-functionals teams in the article “The New New Product Development

Game” [16]. The article’s main points about the Scrum were built-in stability,

self-organizing project teams, overlapping development phases, “multilearning”,

subtle control, and organizational transfer of learning [16].

Scrum is the most popular Agile framework because its flexibility, and it can

adapt to any size of team or project. One of the prime benefits to Scrum is that

the work is done by the development team concurrently rather than

chronologically. Scrum breaks down a large workload into small pieces and turn

them into one-to-four-week Sprints. This allows the project to be changed at any

given point of the development and allows developers to start developing

without having all the questions answered by the customer [17]. With Scrum,

instead of having the completed work released at the end of the project, Scrum

takes the most important tasks to be done by order of importance. This

contributes to the fact that user and customer satisfaction is significantly

improved because they receive a usable portion of the project. As a result, the

customer can then report faults and give feedback to development about the

product. This is a critical part to development because it ensures success [17].

Just like all things in life, nothing is perfect, and Scrum is no exception. Scrum

may have the benefit of being able to work in a simultaneous manner, but this

also leads to a drawback that there can be a scope creep [18]. This means that

20

there might not be a definite project due date and the team might feel

discouraged by that fact. This might also lead to inconsistencies and team

members becoming uncooperative or uncommitted. Consequently, the project

might end up with delays, not meeting expectations and ending in failure. The

Scrum team is also limited to ten people and working on bigger projects could

potentially hinder the workforce of organizations [15]. Scrum also requires very

experienced personnel who can work intensively and provide professional

feedback and reports to the team. Learning and implementing Scrum could

prove difficult for organizations because of the need for experienced

professionals. Consequently, if a team member was to leave during a project,

this could lead to a lot of pushbacks or failure [18].

4 Scrum Implementation

Implementing Scrum is not an easy task because it requires a set of defined

roles, principles, and workflow as shown in figure 7.

Figure 7. The Scrum Framework [34].

21

4.1 The Scrum Team

The Scrum team is devised of a Product Owner, Scrum Master and the

development team which consists of five to ten individuals. This collective is

supposed to work together as a whole to deliver product increments and

encourage one another to communicate on a high-level [15].

4.1.1 Product Owner

The product owner (PO) is the person who takes care of business and is

representing the needs of the stakeholders and customers to the team. They

take those needs and translate them into user stories which are stored in the

product backlogs to be arranged depending on customer and stakeholder

requirements. The PO is responsible of the product backlog management and

uses that to maximizing the value of product by providing the product’s vision

and ensuring the best work performance from the Scrum team. They must also

get constant feedback on the product and product backlog from the customer

and stakeholders this ensures success for the team [35].

Besides managing the product backlog, the PO must have the respect from the

Scrum team because this ensures other team members will agree with the

decisions the PO makes. Only the PO can change a product backlog item and if

another member of the team wishes to make changes, they must get it passed

through the PO [35].

4.1.2 Scrum Master

The Scrum master (SM) is the person who makes sure that the team is

following the foundation and principles of Scrum. Much like the PO, the SM is

accountable for the success of the team which involves having group sessions

or one on ones with development team members. The SM is the coach of the

team. They help the members be self-organized and be cross-functional. If the

development team has some sort of blocker or impediment, they will be the

22

ones to try and assist in overcoming this obstacle. The SM will ensure that team

collaboration is fruitful, constructive, and productive [17][35].

The PO can also benefit from the assistance of the SM because they can

provide useful techniques for product goal definition and product backlog

management. The SM can also help the PO facilitate product planning when

there is a more compound environment and an ample amount of backlog items

to breakdown. The SM will also be responsible for making sure that the product

backlog items were understood by the development team and if some items are

misunderstood, the SM will encourage the team members to approach the PO

with questions for clarity [35].

To be an effective Scrum Master, there are certification exams that are

available and offer certificates that validate a certain amount of knowledge.

These include the Profession Scrum Master I which demonstrates fundamental

level of Scrum mastery, Professional Scrum Master II which demonstrates an

advanced level of Scrum mastery and Professional Scrum Master II which

demonstrates a distinguished level of Scrum Mastery [35].

4.1.3 Development Team

The development team is a set of experts who are not defined by titles, instead

they go by the name of “developer”. Everyone that is part of the development

team can be proficient on one or multiple specific professional areas. They are

the ones responsible for planning and creating the Sprint backlog. Developers

are also responsible for establishing quality by following the Definition of Done

(DoD). DoD is when the product must satisfy all condition made by the user or

customer and it is ready to be accepted. The development team members must

plan their days to fit the Sprint goal so that they can commit to the stories they

chose at the start of the Sprint [35].

23

4.2 Scrum Events

Scrum events are time-boxed events, or Sprints, which are established in

advanced with a max duration of a month. These events include the Sprint

planning, daily scrums, Sprint review and the Sprint retrospective [35].

4.2.1 Sprint Planning

The Scrum Master is responsible for holding the Sprint planning meeting and

making sure that all required team members are invited and present. The

product owner makes sure that all team members are ready to discuss the most

important product backlogs and product goal. They will usually send documents

to team members to read beforehand or attach the files in a joint storage. Sprint

planning is also limited to eight hours or less for a one-month Sprint and if the

Sprint is shorter than the planning it will be adjusted accordingly [35].

Sprint planning follows an agenda, and it starts with the Sprint goal. The Sprint

goal is a commitment done by the development team because only they can

make sure that the goal and Sprint will be manageable. This goal also defines

why the Sprint will be beneficial to stakeholders and customers. Once the goal

is set then the PO and development team discuss what can be done in the next

sprint. The developers select items from the product backlog based on the

team’s current performance, confidence and capacity. Developers also plan

their work in increments that meets the Definition of Done and break down

larger tasks into minor tasks which could be done in a day or less. The Sprint

goal, backlogs items, and sprint plan altogether are referred to as the Sprint

backlog [35].

4.2.2 Daily Scrum

Daily Scrum is setup by the Scrum Master, but it is conducted by the

development team. This is a 15-minute meeting to look at the progress of the

Sprint goal and Sprint backlog. If the development team is having issues

24

maintaining the 15-minute window, then it is up to the SM to teach the team in

how to better plan their sessions. The meeting is held at the same time of

everyday of the workweek to promote consistency [15][35].

During the meeting, developers are to plan what they are going to do for the day

and answer three questions. What did you do yesterday? What are you going to

do today? Do you have any blockers? If the developer has a blocker, then it is

the SM’s responsibility to help them remove this impediment. Developers can

also set up a meeting sometime after the Daily Scrum for general Sprint

discussions or to rearrange Sprint backlog items [35].

Daily Scrum is designed to help build communication in the Scrum Team. This

allows for quick and impactful decisions that can facilitate the removal of

impediments within the team. These meetings also improve the development

team’s knowledge as they can share blockers and the team can discuss how

they are to be solved. This allows for future similar blockers to be removed

swiftly, without the need of discussion and therefore, increasing efficiency [35].

4.2.3 Sprint Review

The Sprint Review is arranged by the Scrum Master, but it is demoed by the

Product Owner. The PO is also responsible for inviting key stakeholders to the

meeting and for showing product goal progress. They are to showcase what

was and was not accomplished during the Sprint. The Sprint Review is also set

to last a maximum of four hours for a one-month Sprint [35].

During the discussions, developers are to mention any blockers that arose

during the Sprint, much like in the Daily Scrum, and how these blockers were

resolved. The group can review the current market and determine what would

be the most advantageous next step to do for the product. Timeline, budget,

team capacity and potential should also be reviewed and updated [35].

25

The Sprint Review is not meant to be a presentation but instead a discussion for

learning. The Scrum Team and the stakeholders collaborate on what to do for

the next Sprint which is beneficial for the next Sprint Planning [35].

4.2.4 Sprint Retrospective

The Sprint Retrospective is a meeting which occurs after the Sprint Review and

before the next Sprint Planning. This meeting can be facilitated by the Scrum

Master or the Product Owner. The purpose of the Sprint Retrospective is to

review what went well, what went bad and what can the team improved as

shown in figure 8 [35][36].

Figure 8. Sprint Retrospective session [36].

Pointing out what went well during the Sprint can keep the team motivated,

create positive change and improve overall team knowledge by sharing new

skills or tools that were used during the Sprint. Stating what went wrong is also

essential for the team because it allows the team to reflect and acknowledge

the negatives of the Sprint. It is crucial to remember not to play the blame game

within the team because as a Scrum Team, everyone is equally responsible for

any downfalls that occurred.

26

Retrospectives are a great way to get the whole team in one platform and be

able to communicate freely about the current Sprint. Team members can give

constructive criticism, admit mistakes and grow together as a whole.

4.3 Scrum Artifacts

Scrum Artifacts are pieces of information which a Scrum Team and

stakeholders use to explain the product being established, activities to create it,

and the actions executed throughout the development to achieve transparency.

These artifacts are Product Backlogs, Sprint Backlogs and Increments [35].

4.3.1 Product Backlog

The Product Backlog is a list of what is needed to improve the product. In this

prioritized list the most beneficial improvement is on the top, depending on its

business value. This list is ongoing up until the product is ready, no longer

available or not part of a project [15].

The Product Owner is the one that manages the Product Backlog items and

oversees defining them to be more precise for the development team. Product

Backlog items are usually prioritized by customer urgency, desire of feedback,

and by how difficult it would be to implement. The PO does not decide how fast

these items are being pulled, instead this is done by the development team

depending on team capabilities and current workload in a Sprint. Therefore, it is

important for POs to continuously review the backlog and ensure that it is

correctly prioritized before the next iteration. This is often referred to as backlog

grooming or backlog refinement. Nevertheless, keeping changes to a minimum

is also imperative for the development team because it decreases the chance of

mistakes being made [35].

27

4.3.2 Sprint Backlog

The Sprint Backlog is a list of items pulled from the Product Backlog which the

team plans to complete during a Sprint. Usually, these tasks are presented on a

physical or online board as shown in figure 9 [15].

Figure 9. Sprint Backlog [35].

The Sprint Backlog is a plan that is composed of the Sprint Goal, Product

Backlog items and delivering the Increment. This is created and used by the

development team as well as regularly updated by them. The purpose of the

Sprint Backlog is to keep all the information in a shared space for the

development team and ensure that they can focus on a set of tasks avoiding

scope creep [35].

4.3.3 Increments

Increments are a compilation of all previous increments and current increment

where they have all been integrated, verified and are ready to be delivered.

Therefore, the increment must be usable and provide value to stakeholders and

customers. Developers use these increments to showcase working product and

gather feedback from key stakeholders to guarantee customer satisfaction,

28

continuously improve the product, swiftly make changes, and be more

innovative [35].

5 Conclusion

Agile challenges software development teams to be self-sufficient, organized,

and continuously improving in order to embrace agility for higher performance

and quality. Research indicates that the traditional methods of waterfall and

prototype models were not bringing the required results with the current ever-

changing market. Adapting Agile has allowed companies to increase sales,

product quality, business value, customer satisfaction, and adaptability to

change. Regardless of company size, structure, ideals, or state, all types of

organizations can adapt to the Agile framework.

Choosing the correct Agile methodology depends on business goals, type of

project and customer needs. Kanban is for teams who appreciate visuals and

can make use of the Kanban board. This method promotes collaboration,

accountability and transparency but the team must be aware that the board

must always be up to date. Extreme Programming allows teams to primarily

focus on the software or coding part of the project. Through pair programming,

there are less errors, continuous testing and improvement. Consequently, this

means higher costs and more time investment. Eliminating waste and only

using resources when there is demand is the key principle of Lean (LSD). This

saves time and money by not instilling unnecessary code and requirements

which bring no value to the customer. However, Lean requires more

documentation and is less scalable than other methodologies. Crystal heavily

focuses on individuals and communication, meaning that Crystal values the

expertise of people rather than powerful tools and software. Nevertheless, the

Crystal family tree can be difficult to understand for some organizations.

Scrum is the most popular of all Agile methodologies even though it follows

strict guidelines. Scrum is well-documented and easy to implement, as long as

29

teams follow Scrum procedures. Continuous feedback from the customer during

each short Sprint allows for faster changes and product satisfaction. Feedback

also contributes to faster changes for the product and saves the Scrum Team a

lot of time and effort. Scrum Events enable Scrum Teams to evolve as a whole

and endlessly improve on structural issues.

30

References

1 Qualitylogic 2023. 10 Reasons to Use Agile Software Development
<https://www.qualitylogic.com/knowledge-center/10-reasons-to-use-agile-
software-
development/#:~:text=With%20Agile%20software%20development%2C%
20teams,deliver%20a%20higher%20quality%20product.> Accessed
16.2.2023

2 Laneways 2022. History of Software Development: Brief Guide for Starting
Developers. <https://www.laneways.agency/history-of-software-

development/> Accessed 17.2.2023

3 Hughley, Douglas. 2009. Comparing Traditional Systems Analysis and
Design with Agile Methodologies.
<https://www.umsl.edu/~hugheyd/is6840/waterfall.html> Accessed
17.2.2023.

4 ProjectManager 2023. The Ultimate Guide Waterfall Model.
<https://www.projectmanager.com/guides/waterfall-methodology>
Accessed 17.2.2023.

5 Waseem, Ahad 2022. Waterfall Methodology: History, Principles, Stages &
more. <https://management.org/waterfall-methodology> Accessed
17.2.2023.

6 TutorialandExample. 2019. Prototype Model in Software Engineering.
<https://www.tutorialandexample.com/prototype-model-in-software-
engineering> Accessed 17.2.2023.

7 Lewis, Sarah. 2023. Prototype Model.
<https://www.techtarget.com/searchcio/definition/Prototyping-Model>
Accessed 17.2.2023.

8 Highsmith, Jim. 2001. Manifesto for Agile Software Development.
<http://agilemanifesto.org/> Accessed 17.2.2023

9 Wrike. 2023. What is the Agile Methodology in Project Management.
<https://www.wrike.com/project-management-guide/faq/what-is-agile-
methodology-in-project-management/> Accessed 17.2.2023

10 Product Board. 2023. Agile Values.
<https://www.productboard.com/glossary/agile-values/> Accessed
17.2.2023

11 Eby, Kate. 2023. Comprehensive Guide to the Agile Manifesto.
<https://www.smartsheet.com/comprehensive-guide-values-principles-
agile-manifesto> Accessed 17.2.2023

31

12 Flynn, Jack. 2022. 16 AMAZING AGILE STATISTICS [2023]. WHAT
COMPANIES USE AGILE METHODOLOGY.
<https://www.zippia.com/advice/agile-statistics/ -
:~:text=At%20least%2071%25%20of%20U.S.,more%20successful%20tha
n%20waterfall%20projects.> Accessed 17.2.2023

13 Kiguolis, Linas. 2023. Software Development Frameworks in 2023.
<https://codeornocode.com/software-development/best-agile-
frameworks/> Accessed 17.2.2023

14 Knowledgehut. 2023. Scrum History.
<https://www.knowledgehut.com/tutorials/scrum-tutorial/scrum-history>
Accessed 17.2.2023

15 Digite. 2023. What is Scrum? < https://www.digite.com/agile/scrum-
methodology/> Accessed 17.2.2023

16 Takeuchi, Hirotaka & Nonaka, Ikujiro. 1986. The New New Product
Development Game. <https://hbr.org/1986/01/the-new-new-product-
development-game> Accessed 20.3.2023

17 Agilest. 2023. Why Does Scrum Work?
<https://www.agilest.org/scrum/why-does-scrum-work/> Accessed
20.2.2023

18 Indeed Editorial Team. 2022. List of Scrum Advantages and
Disadvantages. <https://www.indeed.com/career-advice/career-
development/disadvantages-of-scrum> Accessed 20.2.2023

19 Kabanize. 2023. What is Kanban? Explained for Beginners.
<https://kanbanize.com/kanban-resources/getting-started/what-is-kanban>
Accessed 20.2.2023

20 Javed, Rashid. 2022. Kanban.
<https://www.accountingformanagement.org/kanban/> Accessed
20.2.2023

21 ProductPlan. 2023. What is eXtreme Programming? <
https://www.productplan.com/glossary/extreme-programming/> Accessed
20.2.2023

22 Agilealliance. 2023.Extreme Programming (XP).
<https://www.agilealliance.org/glossary/xp/ -
q=~(infinite~false~filters~(postType~(~'post~'aa_book~'aa_event_session
~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~ta
gs~(~'xp))~searchTerm~'~sort~false~sortDirection~'asc~page~1)>
Accessed 20.2.2023

23 Teamhood. 2023. What is Scrumban? <https://teamhood.com/agile-
resources/what-is-scrumban/> Accessed 20.2.2023

32

24 Digite. 2023. What Is Extreme Programming (XP)? & It's Values,
Principles, And Practices. <https://www.digite.com/agile/extreme-
programming-xp/> Accessed 20.2.2023

25 ProductPlan. 2023. The 80/20 Rule for Agile Product Managers.
<https://www.productplan.com/learn/80-20-rule-agile/> Accessed
21.2.2023

26 Rice, David. 2015. Why 45% of all software features in production are
NEVER Used. < https://www.linkedin.com/pulse/why-45-all-software-
features-production-never-used-david-rice/> Accessed 21.2.2023

27 Lean Enterprise Institute. 2023. Explore Lean.
<https://www.lean.org/explore-lean/> Accessed 21.2.2023

28 Kiguolis, Linas. 2023. Discover The Best Agile Software Development
Frameworks in 2023. <https://codeornocode.com/software-
development/best-agile-frameworks/> Accessed 21.2.2023

29 Simpilearn. 2021. Lean Software Development: Definition, Principles, and
Benefits. <https://www.simplilearn.com/what-is-lean-software-
development-article> Accessed 21.2.2023

30 Lutkevich, Ben. 2021. Lean software development.
<https://www.techtarget.com/searchsoftwarequality/definition/lean-
programming> Accessed 21.2.2023

31 Jena, Satyabrata. 2022. Crystal methods in Agile
Development/Framework. <https://www.geeksforgeeks.org/crystal-
methods-in-agile-development-framework/> Accessed 21.2.2023

32 Airfocus. 2023. What is the crystal agile framework. <
https://airfocus.com/glossary/what-is-the-crystal-agile-framework/>
Accessed 21.2.2023

33 Singh, Virender. 2021. Crystal Method in Agile.
<https://www.toolsqa.com/agile/crystal-method/> Accessed 21.2.2023

34 Christie, Jim. 2020. Scrum Graphic. < https://jimchristie.me/blog/scrum-
graphic/> Accessed 22.2.2023

35 Scrum. 2023. The home of Scrum. < https://www.scrum.org/> Accessed
22.2.2023

36 Teamretro. 2023. What is a Sprint Retrospective? <
https://www.teamretro.com/retrospectives/sprint-retrospective> Accessed
22.2.2023

